

Configurations: 12 std, 16 with opt. 3rd mass, 18 with second drive accessory	Damping Adjustment Ratio: >10:1	
Dynamics: 2nd, 4th, and 6th (3 mass option) order, Systems types 0, 1, and 2	Feedback: High resolution encoder (160 count/mm)	
I/O: SISO, SIMO, MIMO (with sec. drive accessory)	High torque brushless servo motor, precision rack & pinion , 8 N output	
Poles and Zeros: Adjustable 1.5-7 Hz	Bench-top size: 31x66x15 cm. (12x26x6 in.)	
Mass Adjustment Ratio: 5:1	Safety Features: Amplifier over-current protection, motion limit micro-	
Spring Adjustment Ratio: 2:1 (certain configurations)	switches & cushions. In firmware (complete system only): relative displacement protection, over-speed protection, i ² t thermal protection	

Easily Transforms to Twelve Distinct Plants (sixteen plants with optional third mass)

Plant Models	$\begin{array}{c} x(t) & c \\ \hline F(t) & m & \downarrow \\ & & \\ \hline m & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	$F(t) \qquad \qquad$	F(t) $F(t)$
Additional Configurations	 		
Time Domain Equations*	$\ddot{\mathbf{mx}}^{(t)} + \dot{\mathbf{cx}} + \mathbf{kx}^{(t)} = \mathbf{F}^{(t)}$	$\begin{split} m_1\ddot{x}_1(t) + k_2 x_1(t) - k_2 x_2(t) &= F(t) \\ m_2\ddot{x}_2(t) + c\dot{x}_2(t) - k_2 x_1(t) + (k_2 + k_3) x_2(t) &= 0 \end{split}$	$\begin{split} m_1 \ddot{x}_1(t) + (k_1 + k_2) x_1(t) - k_2 x_2(t) &= F(t) \\ m_2 \ddot{x}_2(t) + c \dot{x}_2(t) - k_2 x_1(t) + (k_2 + k_3) x_2(t) &= 0 \end{split}$
S-Domain Equations*	$\frac{\mathbf{x}(\mathbf{s})}{\mathbf{F}(\mathbf{s})} = \frac{1}{\mathbf{m}\mathbf{s}^2 + \mathbf{c}\mathbf{s} + \mathbf{k}}$	$\frac{x_1(s)}{F(s)} = \frac{m_2 s^2 + c s + k_2 + k_3}{D(s)}, \frac{x_2(s)}{F(s)} = \frac{k_2}{D(s)}$ $D(s) = (m_1 s^2 + k_2)(m_2 s^2 + c s + k_2 + k_3) - k_2^2$	$\frac{x_1(s)}{F(s)} = \frac{m_2 s^2 + c s + k_2 + k_3}{D(s)}, \frac{x_2(s)}{F(s)} = \frac{k_2}{D(s)}$ $D(s) = (m_1 s^2 + k_1 + k_2)(m_2 s^2 + c s + k_2 + k_3) - k_2^2$
Characteristics	 Classic damped oscillator. Pole excess = 2. Configurable to type 0,1, or 2 system. 	 Two damped modes. x₁/F: "Damped" zero, pole excess = 2. x₂/F: "no zeros, pole excess = 4. Configurable to type 0,1, or 2 system. 	 Two damped modes. x₁/F: "Damped" zero, pole excess = 2. x₂/F: "no zeros, pole excess = 4. All configurations type 0.

*Three mass Model 210a has dynamic order up to six with three oscillatory modes.

© 1995-2000 Educational Control Products, All Rights reserved

◀ 3 Þ