DSP Lab For Motor Control and Drives

Features

- Set of DSP CPU target boards featuring TMS320F28335 with on board RAM, +5V signal compatibility, buffered output, USB flashing option, communication ports like UART, CAN, I2C and SPI
- Code Composer Studio development tool
- Emulator to support flashing, debugging and MATLAB interface

Rectifier and inverter stack enclosed in acrylic box with protection system and compatible control signals with CPU boards

Educational Practice Board for TMS320F28335

Processor

- C2000 Delfino series TMS320F28335 Digital Signal Controller
- 150 Mhz. Max operating speed
- On chip 32-bit floating point unit
- 68K bytes on-chip RAM
- 512K bytes on-chip Flash memory
- On board IEEE 1149.1 JTAG emulation connector with LED indication
- 6 channel DMA controller (For ADC, McBSP, ePWM, XINTF, SARAM)

On-Board Memory

- 1M bytes (64kx16) off-chip SRAM memory
- 256K EEPROM interface
- USB for Flashing

On board Data Transfer Interfaces

- USB Connector for UART-A interface
- DB9 connector for UART-A interface
- LED indication for Transmit and Receive data at UART-A
- 3 pin header for UART-B interface

- DB9 connector for CAN-A interface with onboard hardware Loop back mode feature
- 4 pin header for CAN-B interface with onboard hardware Loop back mode feature
- SPI and I2C devices

Onboard Input/Output Interfaces and other **Facilities**

- Power-On LED indication
- Connector for Watchdog timer output
- 20 Pin (10x2 header) Connector for 16 **GPIO** lines
- DB25 Connector for 8 Digital Input and 8 Digital Output interface with +5V compatibility
- Error + Trip +5V compatible connector for Inverter control module
- LED at GPIO Pin as GPIO Test point
- I2C based Off-Chip EEPROM interface
- I2C based Off-Chip RTC interface

Onboard Special functionality

• MATLAB/SIMULINK compatible

- DB9 connector for 6 channel capture interface
- DB25 connector for 12 channel PWM interface
- DB15 connector for 8 Channel On-Chip ADC-A interface (with 3V protection using OpAmps with unity gain output)
- DB15 connector for 8 Channel On-Chip ADC-B interface (with 3V protection using OpAmps with unity gain output)
- Potentiometer to test On-Chip ADC
- DB9 connector for 4 channels SPI based External DAC interface
- Reset Switch with LED indication
- Switch for Run/Program mode switching with LED indication
- · 4-way DIP Switch for 16 different boot mode selection

General test points

Test points for All the PWM, ADC and Power supply section

Development Tools

Code Composer Studio IDE

Code Composer Studio™ (CCStudio) is an integrated development environment (IDE) for Texas Instruments (TI) embedded processor families. CCStudio comprises a suite of tools used to develop and debug embedded applications. It includes compilers for each of TI's device families, source code editor, project build environment, debugger, profiler, simulators, real-time operating system and many other features.

JTAG Emulator for TI2000 platform

The C2000 Series USB JTAG Emulator allows the user direct access between the host computer and the TMS320C2000™ Platform DSC using the IEEE 1149.1 IEEE JTAG Interface. A JTAG emulation connection is required for debugging software, downloading code, and flash programming Texas Instruments JTAG DSCs. Compatible with Code Composer Studio IDE and supports on chip flash programming.

USB JTAG Emulator for EPB28335

- The emulator provides JTAG access to Texas Instruments' JTAG based devices
- It is compatible with Code Composer Studio™ V5 development environment
- Debug features (Emulation Connect/Disconnect, Read/Write memory, Read registers, Load program, Run, Halt, Step, Software and Hardware Breakpoint support, Real-Time Mode)
- Support for targets with 1.8v and 3.3v IO voltages
- Support for USB High Speed (480 Mbit/s)
- · Supports cable-break detection
- · Supports target power loss detection
- · Support for multiple FTDI devices
- Adaptive clocking
- · LED light to indicate active USB connection

Block Diagram of DSP Based Motor Control Setup

Interfacing Kits

Inverter Stack Module

- The specifications can be configured based on the following parameters
- Stack: Rectifier(optional) + Inverter + Brake Chopper (optional)
- Voltage: Input ac Voltage(optional), DC voltage Vdc, Output AC Voltage (controlled)
- Output Current: 30 A maxOutput Frequency: 50 Hz
- Switching Frequency: 20 kHz max
 Ambient Temperature: 40 deg C.
- Cooling Method: Forced Air Cooled
- Three/Four IGBT gate module (Inverter leg) made up of 3 IGBT with an anti parallel diode
- Inverter module can be made optionally along with Rectifier, Brake Chopper module made up of 1 IGBT with an anti parallel diode
- Optional three phase bridge rectifier module with Blocking voltage of 1600 V and high surge current carrying capability
- Gate Driver module to interfaces and isolates the Control Unit and to control the IGBT's dynamic behavior and its short - circuit protection with Input signal level of 0/15V and Interlocking time between the input signals of 3µs.
- The Gate Driver also monitors the errors: power supply undervoltage (below 13 V), short-circuit between Collector and Emitter and the error reset time is typically 9µs. On detection of error/fault, the Gate Driver switches off the IGBT.
- · Optional DC capacitor bank and snubber capactors
- IGBT modules are mounted on 250 mm heat sink along with the axial fan connected to it to dissipate the heat generated by the IGBTs
- Normally Closed Thermal contact switch is provided for temperature protection

Current and Voltage Sensor Interfacing Panel

- The Current and Voltage Sensor interfacing kits are available separately with the following general features
- This kit contains 3 Current/Voltage sensors and encoder interfacing facility
- The board is designed for the 1HP Inverter stack and Motor control application
- Input facility for AC/DC current/voltage sensor from the Inverter
- · Current sensor range can be varied using jumper setting.
- Power supply contains input supply of +15VDC, -15 VDC and +5VDC with LED indication
- 0 to 3V sensor output is provided on DB15 female connector which can be directly interfaced with the DSP kit
- Direct interface with EPB28335 for easy experimentation
- Test points are provided for the Encoder input and output signals (A, B, Index, Strobe, GND)

Current Sensor Features

Current Measurement range : 5A, 6A, 8A, 12A, 25A Fix Offset DC Bias voltage : 1.5 V

Offset DC Bias voltage range : 1.0V to 2.0V variable (Using

Potentiometer) Fix Offset AC output voltage : 3V

Offset AC output voltage range : 2.5V to 3.5V variable (Using

Output Current waveform Potentiometer)

Sine wave (Input is pure sine

wave is assumed)

(Output sine wave will be above ground line)

Voltage Sensor Features

Voltage Measurement range : 10V- 500V Fixed

Fix Offset DC Bias voltage : 1.5 V

Offset DC Bias voltage range : 1.0V to 2.0V variable (Using

Potentiometer)

Fix Offset AC output voltage

Offset AC output voltage range : 2.5V to 3.5V variable (Using

: 3V

Potentiometer)

Output Current waveform : Sine wave (Input is pure sine

wave is assumed)

(Output sine wave will be above ground line)

PWM Isolator Kit

- General purpose PWM Isolator kit for direct connection with DSP board to generate fully isolated and amplified PWM signals
- It converts the 5V DC PWM signals generated from the DSP board to 15V DC level which can be further given to the power module under study.
- PWM isolator outputs 12 channel isolated +15 V PWM signals
- PWM input signal voltage is of +5 V
- Input Power supply range is from +9V DC to +36V DC
- · Thermal Trip facility provided
- Capable to capture errors signal available from inverter module
- · Microcontroller interface for Error signal and Thermal trip
- On board LED indication for Thermal Trip and Error signals
- On board Power On LED, test points for signal testing and fuse for protection

Experiments:

DSP board based experiments

- Exploring different communication protocols like UART, CAN and I2C based devices like EEPROM, RTC
- Experiments to explore data converters like ADC and DAC
- Experiments to generate PWM signals
- Experiment to generate a pair of complementary 1 KHz signal
- · Practical to generate a dead band unit on EPWM1A/1B
- Practical to generate HRPWM for PWM-A and PWM-B
- · Experiment to capture signal using pooling and interrupt methods
- Practical to explore timer peripheral
- Writing and reading data on external and internal RAM

Inverter Stack based experiments

- Experiment to interface inverter module with 28335 target board with variable frequency and variable dead band
- Experiment to interface inverter module with 28335 target board with variable frequency and variable dead band taking care for error signal as well as thermal trip
- · Practical based on three phase bridge inverter

Distributor
Technics Infosolutions Pvt. Ltd.
4648/21, Sedhumal Building,
Darya Ganj, New Delhi-110002.
Phone: 011-23282582, 09105 19219(M)
emäll: info@technicsonline.com

BLDC Interfacing Kit

- The BLDC28335 is a general-purpose power stage board able to drive brushless DC motor.
- Flexible platform for developing motor control applications.
- All required power and control signals needed for controller interface are available on the board
- Can drive BLDC motor upto +24V DC/ 6A
- Power supply input voltage range is between 12V DC to 14V DC, 6/8 A
- PWM connector of 8 channel PWM input of +5V
- ADC connector is to read motor voltage, shunt voltage and supply voltage
- Capture connector is to read the hall sensors positioning and speed
- Test points for input PWM signals
- · Test points for U, V, W, X Motor input signals
- Test points for input voltage, Motor voltage and Hall sensor voltage and +5V DC voltage is available
- On board Status LEDs to read the Hall sensor positioning
- On board Power On LED and test points for signal testing
- On board fuse for protection at high current and high voltage

Hands-on Training Program on DSP available

* Specification are subject to change without notice